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Computer simulation study of a one dimensional plane rotator system 
with long-range interactions 

by S. ROMANO 
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1-27100 Pavia, Italy 
Unita’ G.N.S.M.-C.N.R./C.I.S.M.-M.P.I. via A. Bassi 6, 1-27100 Pavia, Italy 

(Received 24 February 1988; accepted 21 April 1988) 

We consider a classical system of particles, consisting of two-dimensional unit 
vectors associated with a one-dimensional lattice {uk 1 k E Z }  and interacting via 
translationally invariant pair potential(s) 

W, = -cr- 3’2Tm(uj, & ) ,  r = l j  - kl, E > 0; 

here rn is a positive integer and T, is a Tchebyshev polynomial of the first kind 

%(Uj * U k )  = cos[rn(pj - ( P k ) ] .  

where { ( P k }  are the angles defining the orientations of the plane rotators in 
an arbitrary reference frame. For the case rn = 1, Frohlich et al. have proved 
rigorously the existence of a ferromagnetically ordered phase at low but finite 
temperature; moreover, all the potential models W, give the same partition func- 
tion, and several mean values can be defined in an rn-independent way. For 
example, when rn = 2, this entails the existence of nematic-like order. The system 
was characterized quantitatively by Monte CarIo simulation, and calculations 
were performed in the nematic representation (rn = 2); simulation results suggest 
a second-order transition at T: ( = k T , / & )  = 2.16 0.01. Comparison with 
molecular field and spherical model treatments is also reported: the former, but not 
the latter, agrees reasonably well with the simulation results. 

1. Introduction 
We consider a classical system of particles, consisting of n-component unit vectors 

{uk},  associated with a d-dimensional lattice Z d ;  let xk denote their coordinates, and 
let q k  be their translationally invariant pair interaction potential. When n = 2, the 
unit vectors lie in a plane (in the lattice plane when d = n = 2); they are then referred 
to as plane rotators, and their orientation in an arbitrary laboratory frame is uniquely 
defined by a set of angles ( ( P k } .  In addition to a few exactly soluble models [l,  21, over 
the last twenty years, various rigorous results have been obtained, concerning the 
existence or the absence of an ordered phase at low but finite temperature, depending 
on d, n, and the functional form of the potential [3, 41. We restrict our discussion to 
isotropic potential models, i.e. functional forms left unchanged by applying to all the 
unit vectors any linear (orthogonal) transformation of the group O(n): 

4 k  = f ( r j k k ) y ( Z j k ) ,  (1) 

r = r,k = x, - xk,  r = Irl, z = z,k = u, ’ uk. (2) 

where 
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1216 S. Romano 

For example, when f has a finite range, an ordered phase may survive for d = 2, 
n = 1 ,  but it cannot for d = 1 and arbitrary n, nor for d = 2, n 2 2 [5-lo]. Such 
theorems do not rule out a Kosterlitz-Thouless transition in two dimensions, whose 
existence has also been proved rigorously in some cases [ I  I]. Under appropriate 
conditions, Romerio [12] has proved the absence of orientational order for a two- 
dimensional liquid of plane rotators, i.e. for potential models of the form in equation 
(2), but where the coordinates { x k }  are allowed to vary continuously. 

It was also pointed out [ I  31 that the vanishing of order in the thermodynamic limit 
need not exclude its existence for a finite but macroscopically large sample: for 
example, it is sometimes possible to prove [13] that the relevant quantity (order 
parameter or transition temperature) vanishes in the thermodynamic limit like 
(I/ln N ) ,  where N is the number of particles in the system. 

For comparison, we also mention that, when d = n = 3, nearest-neighbour 
isotropic potential models such as [4] 

(3) 

y k  = - & P Z ( T j k )  (4) 

v. = -&T. Ik I k ,  & > 0 
or [14] 

are known to produce overall orientational order; here P2(z )  is the second Legendre 
polynomial. On the other hand, it is by now well known that a long-range potential 
can stabilize an ordered phase when d d 2; to be more specific, we shall consider the 
ferromagnetic models 

(5) 
whose behaviour has been extensively investigated as a function of d, n, and 0. When 
d < 2 and n < 2, a ferromagnetic phase is known to exist only in the cases 

v = -&r?-= I k  T j k ,  d = 1 ,  2, (r > 0, 
i k  

d = 1, n = 1 ,  0 < 0 < d, [15-171, 
d = 1 ,  n = 2, 0 < (r < d, [16, 18, 191, 
d = 2, n = 2, 0 < CT < d, [16, 201. 

These powerful results also imply the existence of a disordering transition; on 
the other hand, they do not provide quantitative estimates for, say, the transition 
temperature. 

The behaviour of critical exponents in the d - n - (r space has been extensively 
investigated by renormalization group techniques [2 1-29], and various regions and 
boundaries have been investigated; the systems’ thermodynamic properties were 
calculated explicitly by the spherical model [30] treatment, which is known to be their 
exact limit when n tends to infinity [30, 311; rigorous bounds on the correlation 
function have also been obtained for the disordered phases [32, 331. In contrast, 
simulation results for such systems are rather scarce in the literature [34-351 and the 
corresponding antiferromagnetic long-range models have been studied far less exten- 
sively [36-401, in contrast to the wealth of results available for their short-range 
counterparts. 

From now on, we shall restrict out attention to d = 1, n = 2 (plane rotators on 
a linear lattice, so that xj = j E Z ) ;  we also point out an important symmetry 
property of plane rotators. We define 

(6) Z, = jr A[cos(t), sin(t)]dr, 
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Simulation of a one dimensional plane rotator 1217 

where A is an arbitrary integrable function, and 
r2n 

I ,  = J A[cos(mt), sin(mt)]dt, Vm E Z - (0 ) .  
0 

(7) 

It can easily be proved that 

I,  = I , .  (8) 

Moreover, on the basis of the trigonometric identity 
m 1 exp(2niklm) = 0, m > 2, 

k =  I 

it is easy to check that 

(9) 

jr { :;:} (At)A[cos (mt), sin (mt)]dt = 0, (10) 

where A is an integer, but not a multiple of m; on the other hand, when A is a multiple 
of m, say A = Lm, equation (7), is obtained again so that the value of the integral 
depends on L but not on m. 

Let us consider the potential models 

W, = f(r)Tm(t), m E Z,  m 2 1, (1 1) 

where T, are Tchebyshev polynomials of the first kind [41] 

T,(t) = cos [arcos (mt)] 

= cos[m(qj - (Pk)]. (12) 

Equations (8) and (10) imply that all the potential models W, have the same partition 
function and that several mean values can be defined in an m-independent way, as we 
shall see later. As a step towards a better understanding of its physical behaviour, we 
decided to carry out a Monte Carlo simulation for a potential model defined by 
d = 1, n = 2,O < r~ < 1; r~ = 0 produces a ground state with an infinite energy per 
particle, whereas for o = 1 the system disorders at all finite temperatures in the 
thermodynamic limit. Simulation requires a more precise definition of the potential, 
thus it seemed to be both simple and reasonable to choose the midpoint CJ = 1/2, i.e. 

wm = -&r-3’2Tm(t); (13) 

the case m = 1 produces a ferromagnetically ordered phase, and m = 2 defines a 
lattice model of a nematic liquid crystal. Thus the rigorous results obtained by 
Frohlich et al. [ 161 ensure the existence of an ordered phase at low temperatures, and 
numerical simulation helps characterize it quantitatively. There has been some debate 
about nematic-like orientational order in low-dimensional systems [42-431, and 
in some cases its absence has been proved rigorously [7-10, 121; here we can rely 
on the proved existence of a transition to an ordered phase [16]. Most theorems 
concerning the absence of orientational order are based on isotropic pair potentials 
(cf. equation (1)) and need not hold for more general functional forms [12, 431. 

The system’s ground state corresponds to the degenerate configuration 

qk = (p + 2nlklm, l k  = 0, 1, 2 , .  . . , m - I ,  (14) 
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1218 S. Romano 

where (p is an arbitrary constant reflecting the continuous O(n) degeneracy, and the 
value m induces an additional discrete one. The ground-state energy, in units of 
&/particle, is 

oc 

u,* = - c j-312 = -((3/2) = -2.612, (15) 
J = I  

where the function ( is defined by [41] 
m 

i(s) = c k-'. 
k =  1 

2. Computational aspects 
The calculations were performed using periodic boundary conditions and the 

Ewald-Kornfeld algorithm for lattice summations [44-471. We consider a periodically 
repeated sample, consisting of N particles, with integer coordinates {xi = j }  and 
fractional ones y j  = x j / N ,  in an arbitrary configuration R = {qk} .  The relevant 
formulae for the potential energy of the configuration, based on Tosi's review paper 
[46], are 

where 

D, = 

D2 = 

F(m) = 

D, = 

D, = 

CI,2(h) = 

C,,,(h) = 

and 

r(3/4) = 1.22541 67024. (25) 
Here el and e, are two arbitrary orthogonal unit vectors and w is a real positive 
number which only affects the rates of convergence of the two series (in opposite 
senses); the series in D, ranges over the direct lattice and excludes the case 1 = 0 when 
j = k; the series in D, ranges over the reciprocal lattice excluding h = 0. The 
incomplete gamma function is defined by 

t ' - l  exp(-t) dr, (26) 
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Simulation of a one dimensional plane rotator 1219 

and the recurrence property [41, 461 

r(z + 1, PI = z w ,  PI + PZ exP(-P) (27) 
can be used to reduce the functions with negative z to functions with positive z.  

We chose w to be 6.75 and truncated the series in D, at h d 20; the other series 
was truncated according to the usual nearest-image prescription; calculations were 
performed mostly with m = 2, in the nematic representation. As a compromise 
between available computational resources and desired accuracy, we chose N = 1024 
particles. At the lowest temperature investigated, calculations were started from the 
ground-state configuration (cf. equation (14)); dimensionless reduced temperatures 
and potential energies are given by 

T* = kT/E, (I* = (w)/(NE), (28) 
where ( W) is the mean sample energy and U *  is the mean energy per particle. 

The calculations were performed in increasing temperature order, i.e. the equilib- 
rated configuration produced at one temperature was used to start both the produc- 
tion run at the same temperature and the equilibration run at the next higher one. 
Equilibration runs took between 2000 and 4000 cycles (where one cycle corresponds 
to N attempted moves), and production runs took between 4000 and 8000; sub- 
averages for evaluating statistical errors were calculated over macrosteps consisting 
of 200 cycles. Calculated quantities include energy, configurational specific heat C, 
(both as a fluctuation quantity and by least-square fitting and numerical differen- 
tiation of the energy), Kirkwood g-factors, orientational correlation functions and 
order parameters. The singlet orientational distribution function was calculated at 
one temperature in the ordered region (at T* = 2). 

On the basis of equations (8) and (lo), several quantities can be defined in an 
m-independent way; for example, the magnetic moment per particle and its mean 
square value are given by 

MI = (l/N)(F(m))m; M2 = (1/N2)(F(m) * F(m))m, (29) 
where (. . .), denotes an average with respect to the potential W,. We also define 
m-independent Kirkwood g-factors [48] and orientational correlation functions by 

g2~  = {2/[N*(N - I)]} 1 T ~ ~ ( U j ' u k ) )  9 L = 1, 2 (30) 
( j < k  m 

and 

GJr) = (TLm(u, - u,)),, as functions of r = l j  - kl, 

L = 1, 2, 3, 4; (31) 
here g, essentially coincides with M 2 ;  orientational correlation functions were cal- 
culated at a few selected temperatures, both below and above the transition, in order 
to save computer time. 

In keepting with nematics, we define the order parameters by the mean values 
[49-5 11 

where the unit vector v defines the director. Since its orientation is not, in general, 
known in advance and can change in the course of simulation, we had to follow a 
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1220 S. Romano 

more elaborate procedure in order to compensate for director fluctuations (similar 
difficulties arise for MI in the magnetic case). We have calculated for each macrostep 
[49-5 13 both the traceless second-rank ordering tensor 

Q, = ~ ( u L u , )  - 6nl19 (33) 

and its fourth-rank equivalent 

B,,,,, = [48(u1u,u,ue> - 8(6v,(Ulu,) + 6,,(u,uv) + 6,v(u1U,)  + ~ i , ( U , U J  

+ 6ilv(UpU,) + S) .p(UvU, ) )  + 2(6,,6v, + 6 1 , 6 p ,  + 6,1@6pv)1/6. (34) 

Qip is then diagonalized to obtain its eigenvalues {q , ,  q 2 }  where q1 + q2 = 0, and 
eigenvectors {vI , v2}. The eigenvector associated with the positive eigenvalue gives the 
director orientation in the laboratory frame. Additional checks indicate it to be stable 
over the macrostep length used here [49]. (In equations (33) and (34), (. . .) means 
(. . . )2 .) Let now q3 = lql I and let ijI, QZ and lj3 indicate their averages over all 
macrosteps, and let q4 = (ql 1; owing to director fluctuations over several macrosteps, 
q3 and q4 do not coincide, although they do so at low temperatures, and agree 
qualitatively in the ordered phase; we take fj3 to define the order parameter T2 for the 
ordered phase [49-5 11. 

In the disordered region, the director is losely defined [51], and the order param- 
eter should be zero apart from sample size effects; here q3 can be expected to 
overestimate the amount of orientational order, and q4 to underestimate it; we also 
calculated and report the quantity 

(55 = G 3  + ( 5 4 w  (35) 

In principle the disordering temperature has to be known and then we should switch 
from one definition to the other; this piece of information is supplied by the thermo- 
dynamic properties. For each macrostep we reorder the eigenvalues to give 
(4; , q; I q; > O } ;  the correspondingly reordered eigenvectors {v; , v;} define the 
column vectors of an orthogonal matrix A such that 

j = l  k = l  

which, in turn induces an orthogonal transformation of B 
2 2 2 2  

B&'e = c c c 1 A2.iApjAvkA,/Bijk/* 
i = l  j = l  k = l  1 - 1  

We define [51] 

T4 = %222, 

(37) 

where the bar denotes an average over all macrosteps. As for the singlet orientational 
distribution function, after equilibration we generated 10.24 million moves at T* = 2 
and analysed every 2048th configuration as described later; such a length was necess- 
ary in order to achieve reasonable statistics. In the present case the distribution 
function is an even function of cos 9, where 9 is the angle formed by the individual 
molecule with the director. This can be expanded as [50] 

S(9) = (1/71) 1 + 2 c a 2 k  cos(2k9) , [ k>O 1 (39) 
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Simulation of a one dimensional plane rotator 1221 

where the quantities aZk are even rank order parameters, and 9 can be restricted 
between 0 and IT. The whole Monte Carlo chain was sub-divided into macrosteps, and 
configurations to be analysed were dumped on a disc file; the ordering tensor was 
averaged and diagonalized, and the eigenvector v associated with its positive eigen- 
value defined the director. The configurations to be analysed were retrieved, and for 
each particle the quantity y = arcos (Iv - ujl) was calculated and converted to an 
integer counter for a 201-bin histogram. 

3. Results and comparison with other treatments 
The results for the potential energy, the specific heat, the order parameters and the 

Kirkwood g-factors are plotted in figures 1 to 4, and clearly indicate a disordering 
transition taking place at temperatures between 2.15 and 2.2. The energy and order 
parameter results suggest a continuous change across the transition, and the specific 
heat suggests a weak discontinuity; we propose therefore a second-order transition at 
T: = 2.16 & 0.01. The transition is known to be weakly first-order in real nematics 
and for various short-range potential models studied in three dimensions, where the 
order parameter at the transition typically ranges between 0.3 and 0.5 [51 (a), 52-61]. 
Among them, the Lebwohl-Lasher lattice model (cf. equation (4)) has been extensively 
simulated, and its transition temperature is estimated to be 1.1232 k 0.0006 for a 
sample consisting of 27,000 particles [5  1 (a)]; simulation estimates obtained with smaller 
sample sizes may differ by up to 2 per cent [51 (a), 54(c)]. We also notice a broad 
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1 . 5  2 2 . 5  3 

T *  

Figure 1. Results for the potential energy; the relative statistical error is usually not greater 
than 0.5 per cent. 
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I 
0 1  I I I 

1 . 5  2 2.5 3 
T *  

Figure 2. The configurational specific heat: fluctuation quantities with error bars, and results 
obtained by least-square fitting of the energy. 

qualitative similarity with a simulated two-dimensional potential model defined by 
d = 2, n = 2, 0 = 1 [62], where T: = 3.96 k 0.02. For another comparison, we 
consider the two one-dimensional lattice models with nearest-neighbour interactions 
defined by equation (4) (n = 3) and by its T2 counterpart (n = 2) respectively. They 
have been solved exactly [7], and found to disorder at all finite temperatures; simu- 
lation results [63] agree rather well with the exact ones, and only mimic orientational 
disorder when the sample size exceeds 1000. 

All the orientational correlation functions (cf. figure 5) were found to decrease 
with distance in an essentially monotonic way, and higher-order ones quickly decay 
to zero, already in the ordered phase. We found IG,(r)l < 0.01 and (G4(r)l < 0.003 
at all distances for T* = 2, and IG2(r)l < 0.01 at all distances for T* = 2.25. In the 
ordered region, the long-distance limits of GI and G2 agree with the corresponding 
order parameters, according to [49-501 

TiL = r -m lim GL(r),  L = 1, 2; (40) 

in this region G , ( r )  is well fitted by the functional form 

Gl(r) = cI + cz/(c3 + r p ) .  (41) 

On the basis of equation (40), the quantities T2L (calculated in the nematic represen- 
tation via the ordering tensors) can be taken as rn-independent order parameters. In the 
disordered region, G, should tend to zero as r tends to infinity; owing to finite sample 
size, periodicity and long-rangedness of the potential, we found for GI a long-distance 
limit of the order of 0.0025. In order to compensate for the residual order, we fitted 
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u3 

0 

- 
Tm 

w 
0 

cu 
0 

+ 
+ 

+ 
+ 

+ + 
+ 
+ 
+ + 

+ 
+ 

+ a) 
+ 

x 4 + 
X 

+ X 

X + 

0 
1 . 5  2 2.5 3 

T *  

Figure 3. The results for the order parameters (a) F2 as calculated via &; (b) F2 as calculated 
via q5;  (c) T.,; the quantities Q3 and cj5 are defined in the text. 

G ,  by the function form [64-651 

G , ( r )  = cI + h(r) + h(N - r); 

h(r) = czexp(-sr)/(c, + rp); 0 < r < N/2. 
h(r) has a rather general and flexible function form, consistent with known or expected 
behaviour of the correlation function [3 1-33, 661. The fitting parameters were deter- 
mined using the general non-linear least-square program MINUIT in the CERN 
library, and some of them are reported in the table; inclusion of the term h(N - r) 
did not appreciably change the quality of the fit for T* 2 2.5. 

A simple molecular field approximation [48, 67-69] can be developed starting 
from equation (13) for the pair potential and expressing it in terms of the angles cpj 
and (Pk for the two particles. The potential (m = 1) is then averaged over the 
orientation of the second particle according to the prescription 

summation over the interparticle vectors allowed by the lattice gives the one-particle 
pseudopotential as 

(sincp,) = o and (coscpk) = PI,MF; (43) 

- 

with 
' A  A\ 
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T' 

Figure 4. The results for the Kirkwood g-factors: (a) g,; (b) g, as a function of temperature. 

Fitting parameters in equations (41) and (42) as a function of temperature. 

T* P s 

1.50 
1.75 
2.00 

2.25 
2.50 
2.75 
3.00 

0.66 
0.62 
0.64 

( f 0.04) 
0.56 
0.69 
0.84 
0.91 

( f 0.06) 

- 
- 

- 

0.009 
0.005 
0.007 
0.01 1 

( f 0.003) 

Here PI,,, is determined by the usual self-consistency condition 

1 cos(q)exp(- m / T * )  d q  

[ exp(- @/T*) dq 
= 277 

with 
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1 

I 
01 I I 
0 200 400 

1 

r 

Figure 5. Plots of the orientational correlation functions at the temperature T* of 2.  ( a )  G, (r);  
(b)  G2(r); the correlation functions G,(R) are defined in the text. 

where I, are modified Bessel functions of order 1. Upon solving equation (45) 
numerically, is found to decrease continuously to zero at the temperature 
TtfMF = IU,*I, and the transition is found to be second order [67-691. The transition 
temperature is overestimated by 20 per cent at worst; a similar success of the molecular 
field approximation has been found for various simulated short-ranged nematogenic 
models in three dimensions [52-611. Critical exponents, with the meaning of symbols 
as defined by Fisher and Stanley [31,66], have been calculated by various treatments, 
and are reported here for the sale of completeness. The molecular field approximation 
gives 

G1 = 0, p = 1/2. (46) 

U k ' U k  = I ,  k =  I , 2  , . . . ,  N ,  (47) 

In the spherical model treatment [30] substitution of the stronger condition 

with the weaker one 
N 

enables the thermodynamics to be solved explicitly. On the basis of Joyce's results 
[30 (b)], the transition temperature is found to be 

0, = TtfsM = 2 * 0.7959 - IU,*l, 

= 4.158; (49) 
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1226 S. Romano 

the specific heat has the constant value 

C, = 0.5k, T* < Os, 

and changes continuously, but with a discontinuous slope, at the transition tem- 
perature. The order parameter (mean magnetic moment per spin) is given by 

M = J [ 1  - (T* /Os) ] ,  T* < 0s. (51) 

Here the agreement between the sperical model and the simulation results is rather 
bad, in contrast with the reasonable success of the molecular field predictions. The 
critical properties calculated by the spherical model treatment [30] are 

tl = 0,  = 1/2, v = 2, r1 = 1.5, y = 1 (52) 

(53) 

(54) 

1 W )  cc (l/t>211nt12, X(T) cc (I/t>lln 4 ,  
t = (T* - TZ)/T,*, t > 0 

M(t = 0, H )  cc H”311nHI (critical isotherm). 

Critical exponents for a general (d, n, 0) potential model have been obtained by several 
authors via renormalization group techniques [21-291; the results ford  = 1, 0 = 1/2 
and arbitrary n are [28, 291 

v = 2, = 1.5, = 1, Vn ( 5 5 )  

tl = 0 up to order l/n (56) 
and 

cc (Ilf)211n [Izn‘, X(T) cc (1lt)lln tIfl’,} 
(57) 

in agreement with the spherical model in the limit n -+ co. At the transition tem- 
perature, the correlation function GI possesses the asymptotic power law behaviour 

n’ = (n + 2)/(n + €9, 

[31-33, 661 

G , ( r )  cc r - (d -2+q)  (58) 
and both spherical model and renormalisation group treatments give q = 1.5. Our 
simulation results cannot claim to allow an accurate determination of the critical 
quantities, which requires larger sample sizes (and greater computational resources). 
Yet it should be noted that a crude conjecture based on the results in the table gives 
s = 0, p = 0.6 f 0.05 at the transition, i.e. q = 1.6 f 0.05. 

As for the distribution function (cf. figure 6), the coefficients azk in equation (39) 
were calculated directly from the histogram, which was smoothed by regrouping its 
bins and reducing their number to 41; as a double check, the order parameters were 
recalculated from the smoothed histogram via a linear least squares fit. We obtained 
rather good agreement by truncating the expansion at k = 4, and found a variance 
of 0.000027 with the values 

a, = 0.412 f 0.002, 

a, = 0.071 f 0.002, 

a6 = 0.008 f 0.002, 

a, = 0.001 f 0.002. 
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Figure 6. A plot of the singlet orientational distribution function at T* = 2. 

Inclusion of higher-order terms up to k = 6 led to coefficients a2k (k > 4) smaller 
than 0.0005 in magnitude and did not appreciably improve the fit. The values a2 
and a4 agree very well with the corresponding values F2 = 0.413 f 0.003 and 
F4 = 0.072 f 0.003, as obtained via the ordering tensors and a far better statistics. 
The molecular field treatment predicts for S(9) an expression of the form [50, 691 

S(9) = exp Lbo + 1 b2k cos(2k3)J , 
k > O  

(59) 

where the coefficients b,, are also predicted to depend on the order parameters; 
truncation of the series in equation (59) at k f 2 gave a variance of 0.00011, and 
inclusion of higher-order terms up to b, reduced it to 0.000027. This contrasts with 
other simulated short-range potential models in three dimensions, and with experi- 
mental data on real nematics [70-721, where a good fit was obtained by truncating the 
series in equation (59) at k = 1. The simulation results point to the conclusion that 
the long-range character of the potential produces an overall mean-field-like 
behaviour of the system. 

The present calculations were carried out on, among other machines, a VAX VMS 
11/780 computer, partly supported by funds from the italian Ministry of Education 
(fondi 40% del Minister0 della Pubblica Istruzione); computer time on a CRAY 
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machine was allocated by the italian C.N.R. The authors wishes to  thank Professor 
G. R. Luckhurst (Department of Chemistry University of Southampton) for helpful 
discussion and  suggestions. 
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